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We study the relaxation towards thermodynamical equilibrium of a one-dimensional gravitational system.
This model shows a series of critical energies Ecn where different equilibria appear and we focus on the
homogeneous �n=0�, one-peak �n= ±1�, and two-peak �n=2� states. Using numerical simulations we investi-
gate the relaxation to the stable equilibrium n= ±1 of this N-body system starting from initial conditions
defined by equilibria n=0 and n=2. We find that in a fashion similar to other long-range systems the relaxation
involves a fast violent relaxation phase followed by a slow collisional phase as the system goes through a series
of quasistationary states. Moreover, in cases where this slow second stage leads to a dynamically unstable
configuration �two peaks with a high mass ratio� it is followed by a different sequence, “violent relaxation–
slow collisional relaxation.” We obtain an analytical estimate of the relaxation time t2→±1 through the mean
escape time of a particle from its potential well in a bistable system. We find that the diffusion and dissipation
coefficients satisfy Einstein’s relation and that the relaxation time scales as Ne1/T at low temperature, in
agreement with numerical simulations.
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I. INTRODUCTION

The thermodynamics and dynamics of systems with long-
range interactions have been the focus of many studies in
recent years �1,2�. Indeed, such systems exhibit many pecu-
liar features due to their long-range nature and to their non-
additivity, such as ensemble inequivalence between microca-
nonical, canonical, and grand-canonical ensembles and
regions of negative specific heat �3�. On the other hand, their
dynamics presents many interesting phenomena �4�. In par-
ticular, the relaxation to thermodynamical equilibrium can be
very slow and diverge with the number N of particles �5–7�.
Moreover, this relaxation often proceeds in two steps with
very different time scales. First, there is a collisionless relax-
ation over a few dynamical times which involves collective
dynamical instabilities �this step is also called violent relax-
ation in astrophysics �8��. Second, after the system has
reached a mean-field equilibrium a collisional relaxation as-
sociated with two-body encounters, or more generally due to
the discrete nature of the matter distribution which gives rise
to fluctuations with respect to the smooth mean-field poten-
tial �finite N effects�, leads to a slow relaxation towards sta-
tistical equilibrium over a time scale which diverges with
N �9�.

A prototype of such systems with long-range interactions
is the Hamiltonian mean-field �HMF� model defined by a
cosine interaction for particles moving on a circle �2�. It has
been shown �9� that this system first converges to a stable
stationary solution of the mean-field Vlasov equation. Next,
the relaxation to thermodynamical equilibrium proceeds over
a much longer time scale through a slowly varying sequence
of stable stationary states of the Vlasov dynamics. This pro-
cess implies that the dynamics of the system strongly de-
pends on the initial conditions since there are an infinite
number of stable stationary solutions of the Vlasov equation
�9,10�.

In this paper we study the relaxation of the one-
dimensional �1D� gravitational system described in detail in

Ref. �11�. This one-dimensional static cosmology �OSC�
model consists of particles moving between two reflecting
walls within an external potential V which balances the 1D
gravitational self-interaction � so that the homogeneous
state �i.e., constant density� is an equilibrium solution. This
model also corresponds to the evolution of 1D density fluc-
tuations in a 3D cosmological background over time scales
much smaller than the Hubble time so that the expansion of
the universe can be neglected. As shown in Ref. �11�,
this system exhibits a series of critical energies Ecn
�Ec1�Ec2� ¯ �. At high energies the only stable thermody-
namical equilibrium is the homogeneous state �called “n=0”�
and at each transition Ecn two new thermodynamical equilib-
ria �±n� appear. Moreover, equilibria ±1 are stable below Ec1

�while the homogeneous state turns unstable� whereas other
equilibria ±n with n�2 are unstable �both from a thermody-
namical and a mean-field dynamical analysis� except for
equilibrium n=2 which becomes stable for the Vlasov dy-
namics at low energy but remains thermodynamically un-
stable. In this paper we study the relaxation of the OSC
model starting from either the n=0 or n=2 equilibria, which
allows us to investigate both collisionless and collisional
processes. We first recall in Sec. II the thermodynamical
properties of the OSC model. Next, we study the relaxation
of the system, starting from the homogeneous state in
Sec. III A and starting from equilibrium n=2 in Sec. III B.
Finally we conclude in Sec. IV.

II. OSC MODEL

A. Description of the model

The OSC model �11� consists of N particles of mass m
which move along the x axis in the interval 0�x�L �with
reflecting walls� within an external concave quadratic poten-
tial V�x� and which interact through 1D gravity. Thus the
Hamiltonian HN of the system is
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i=1

N

V�xi� , �1�

where vi= ẋi is the velocity of particle i �we note by a dot the
derivative with respect to time t�, g is the coupling constant
of the 1D gravitational interaction, and the external potential
V�x� is

V�x� = − g�̄��x − L/2�2 + L2/4� , �2�

where �̄=M /L is the mean density of the system �M =Nm is
the total mass�. In Ref. �11� the thermodynamics and stability
properties of the OSC system were studied in the mean-field
limit �i.e., continuum limit� where the mass m goes to zero at
fixed density �̄. Then, the gravitational self-interaction is de-
scribed by the potential ��x� with

��x� = g�
0

L

dx���x���x − x�� , �3�

and the dynamics of the system is governed by the Vlasov
equation for the phase-space density f�x ,v , t� within the total
potential �:

�f

�t
+ v

�f

�x
−

��

�x

�f

�v
= 0, � = � + V . �4�

The main feature of the OSC model which comes from its
cosmological context is the appearance of the background
potential V�x� which ensures that the homogeneous configu-
ration �= �̄ is a solution of the equations of motion �this is
the counterpart of the Hubble flow for the expanding uni-
verse�. Alternatively, the constant density �̄ defined from the
potential V can be interpreted as a cosmological constant �in
which case it is not necessarily equal to the mean matter
density� if we work in physical coordinates. The statistical
mechanics of such a system has been studied in the 3D case
in Refs. �12,13�. Here, following Ref. �11� we interpret the
OSC model as derived from a simple cosmological frame-
work without cosmological constant. Then, the external po-
tential V appears through the change to comoving coordi-
nates �14� and the Hamiltonian �1� applies on time scales
which are shorter than the Hubble time �so that the expan-
sion of the universe can be neglected and there is no explicit
time dependence in the Hamiltonian �1��. However, for our
purposes the OSC model can also be studied for its own
sake as a simple model of systems with scale-free long-range
interaction which exhibits an interesting behavior �in particu-
lar the series of critical energies discussed in Ref. �11� and
recalled below in Eq. �11��. In the following we shall
decompose the total energy E from Eq. �1� into its kinetic

�K�, self-gravity �̄, and potential �V̄� components as

E=K+�̄+ V̄ with

K = m�
i=1

N
vi

2

2
, V̄ = m�

i=1

N

V�xi� , �5�

�̄ = gm2�
i�j

�xi − xj� = m�
i=1

N
��xi�

2
. �6�

B. Thermodynamical equilibria

At thermodynamical equilibrium the phase-space density
is the usual Maxwell-Boltzmann distribution:

f�x,v� = ��x�� �

2	
e−�v2/2 
 e−��v2/2+��x��, �7�

where we introduced the inverse temperature �=1/T. The
density is related to the potential by the Poisson equation
modified by a constant term due to the background V:

d2�

dx2 = 2g�� − �̄� with � = � + �̄ and � = �̄e−��. �8�

Here we introduced for convenience the offset �+ �̄ defined
by the condition �= �̄ for �=0. Therefore the thermodynami-
cal equilibrium is set by the equations

d2�

dx2 = 2g�̄�e−�� − 1� and ���0� = ���L� = 0. �9�

The homogeneous state �= �̄ �i.e., �=0� is a solution of Eqs.
�9� which we label as “equilibrium n=0.” Its total energy is

E0 =
MT

2
−

gM2L

6
. �10�

Note that the energy E0 is bounded from below by Emin�0�
=−gM2L /6. Besides, as shown in Ref. �11�, Eqs. �9� yield a
series of critical temperatures Tcn and energies Ecn
�n=1,2 , . . . �. where new thermodynamical equilibria appear,
with

Tcn =
2gML

n2	2 , Ecn = −
n2	2 − 6

6n2	2 gM2L . �11�

Thus at high temperatures above Tc1 the only thermodynami-
cal equilibrium is the homogeneous solution �= �̄�n=0�. Be-
low Tc1 this state becomes unstable and two new stable equi-
libria “n= ±1” appear. The state n=1 corresponds to a
density peak at x=0 and a density minimum at x=L, whereas
the state n=−1 is its reflection through x=L /2. Similarly, at
each critical temperature Tcn two new equilibria ±n appear,
which consist of n half oscillations �i.e., from a density peak
to a density minimum�. The state n�0 shows a peak at
x=0 whereas the state n�0 shows a minimum at x=0. As
described in Ref. �11� the OSC model can also be extended
to the whole real line by symmetry with respect to x=0 and
periodicity of 2L. Then, the state n�0 is a mere translation
of the state �n� by L / �n�. Thus the equilibrium n=2 displays a
density peak at each boundary x=0,L and a minimum at
x=L /2 �whereas state n=−2 shows one density peak at
x=L /2 and two density minima at x=0,L�. Moreover, all
thermodynamical equilibria ±n can be obtained from state
n=1 at a rescaled temperature:

�n��;�� = �1	�;
�

n2
, �−n��;�� = �1	� −
�L

n
;

�

n2
 ,

�12�

where we wrote explicitly the dependence on inverse tem-
perature � and we defined the dimensionless coordinate � by
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� =
x

LJ
= �L

x

L
with LJ =

1

�2g�̄�
, �L =

L

LJ
, �13�

where we introduced the ratio �L of the system size L to the
Jeans length LJ. All equilibria ±n with n�2 are thermody-
namically unstable �in the three microcanonical, canonical,
and grand-canonical ensembles, see Ref. �11��. They also
exhibit a dynamical linear instability in the continuum limit
where the motion follows the Vlasov equation, except for
state n=2 which becomes linearly stable very close to Tc2.
Therefore above Tc1 the stable thermodynamical equilibrium
of the discrete system �1� is the state n=0 with �= �̄ whereas
below Tc1 it is the state n=1. However, as discussed in Ref.
�9� quasistationary long-lived states can also exist and below
Tc2 we can expect the equilibrium n=2 to be such a long-
lived configuration.

At low temperature ��L→
� the density profile of the
peak in the equilibrium n=1 obeys �11�

� �
ln �L

�L
:

�1���
�̄

�
�L

2

2 cosh2��L�/2�
, �14�

whereas the density minimum at x=L scales as

�1��L� � �̄e−�L
2/2 = �̄e−	2Tc1/2T. �15�

For other states ±n we can obtain the asymptotics from Eq.
�12�. Note that the minimum energy which can be achieved
by the OSC system is Emin�1�=−gM2L /2 when all particles
are at rest at the same boundary, either x=0 or x=L. It can
only be reached by the equilibrium n= ±1 at zero tempera-
ture whereas other equilibria ±n with n�2 have energies
above Emin�n=2�=−gM2L /4.

C. Numerical simulations

From Eq. �1� we obtain the equations of motion of the N
particles as

ẍi − 2g�̄xi = g�̄L	Ni
+ − Ni

−

N
− 1
 , �16�

where Ni
+ �respectively, Ni

−� is the number of particles lo-
cated to the right �respectively, to the left� of particle i, that is
with x�xi. In practice, following Refs. �15,16� we rank the
particles in increasing order of xi and when two particles
“collide” we exchange their velocities so that the ordering
remains valid at all times: xi�xi+1. Therefore the numbers of
particles to the left and to the right of particle i are constant:
Ni

−= i−1 and Ni
+=N− i. Thus between two collisions the dy-

namics of particle i is given by

xi�t� = xi
eq + �xi

0 − xi
eq�cosh	 t − ti

0

tdyn

 + vi

0tdyn sinh	 t − ti
0

tdyn

 ,

�17�

where we defined xi
eq as the �unstable� equilibrium position

of particle i and tdyn the typical dynamical time �for the ho-
mogeneous configuration�:

xi
eq =

2i − 1

2N
L and tdyn =

1

�2g�̄
. �18�

In Eq. �17� xi
0 and vi

0 are the particle coordinate and velocity
at time ti

0 �which is taken as the time of the last collision�.
We use the event-driven scheme of Ref. �15� to follow the
dynamics of the system. We store the position and velocity
�xi

0 ,vi
0� of all particles as well as the time ti

0 of their last
collision �initially we set ti

0=0�. Then, we compute the col-
lision time of each particle with its neighbors and we store
the results in a heap structure, so that the next collision is at
the root of this heap. Next, we advance to this first crossing
by evolving the two colliding particles with Eq. �17�, ex-
changing their velocities at collision and updating their last
collision time ti

0. Finally, we compute the new three collision
times associated with these two particles and their neighbors
which we store in the heap. At the next step we take care of
the next collision. Therefore we advance from one collision
to the next and at each crossing we only need to update the
trajectories of the colliding particles and their next crossing
times. The collision time between particles i and i+1 can be
obtained analytically from Eq. �17�. Indeed, this yields for
the distance between neighbors an expression of the form
xi+1−xi=A+Bet/tdyn+Ce−t/tdyn where A, B, and C are con-
stants. Then the condition xi+1=xi leads to a quadratic equa-
tion for the variable y=et/tdyn which is easily solved. There-
fore both the trajectories and the collision times are
computed “exactly” from analytical formulas. Their accuracy
only depends on the numerical accuracy of the computer and
does not involve a discretization procedure to compute inte-
grals or differential equations.

III. RELAXATION TO THERMODYNAMICAL
EQUILIBRIUM

A. Homogeneous initial state n=0

We study in this section the dynamics of the discrete OSC
model �1� starting from initial conditions defined by the ho-
mogeneous thermodynamical equilibrium n=0, i.e., Eq. �7�
with �= �̄. At high energies E�Ec1 the equilibrium n=0 is
stable �and there are no other thermodynamical equilibria�
and we checked numerically that the system remains in this
configuration. Therefore we focus here on systems with total
energies E below the critical energy Ec1 where the state
n=0 becomes unstable �both from the thermodynamical
analysis and the mean-field Vlasov dynamics� and two new
stable equilibria n= ±1 appear, characterized by a density
peak at x=0 �n=1� or at x=L �n=−1�. States ±1 are sym-
metric with respect to x=L /2 and are essentially the same
configuration. Hence we study here the relaxation of the
OSC system from the homogeneous state n=0 to the thermo-
dynamical equilibria ±1.

1. Transition times

We first investigate the dependence on the energy E and
on the number of particles N of the transition time t0→±1
from state n=0 to either state n= ±1. Here we simply define
the transition as the first time where �K−K1 � � �K−K0� and
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��̄−�̄1 � � ��̄−�̄0� �i.e., the kinetic and self-gravity energies
are closer to the levels of states n= ±1 than those of state
n=0�. We display in Fig. 1 the transition time t0→±1 as a
function of the total energy E, obtained for 200 realizations
�crosses� of the initial condition n=0 at each energy.
Fig. 1�a� �respectively, Fig. 1�b�� corresponds to systems of

N=50 �respectively, N=1000� particles. The solid line is the
average of these numerical results.

We can distinguish three regimes in Fig. 1. First, at low
energies below −1.7 �Ec1� the transition proceeds over a few
dynamical times �crosses and solid line�. Moreover, the com-
parison of both panels shows that this time scale does not
display a significant dependence on the number of particles.
Indeed, it is set by the mean-field dynamical instability
growth rate associated with the fact that the homogeneous
equilibrium n=0 is linearly unstable for the Vlasov dynam-
ics.

Second, at energies above −1.7 �Ec1�, closer to the critical
energy Ec1, we find that the transition times t0→±1 can be
quite large and increase with the number of particles. We can
also note that they exhibit a very broad dispersion for differ-
ent random realizations.

Third, at low energies below Ec2�−2.2 �Ec1� we note that
for some realizations of the homogeneous initial state the
system does not directly relax to the equilibria n= ±1. It first
exhibits a transition to the equilibrium n=2 �which appears
below the second critical energy Ec2� over a few tdyn and
remains trapped in this two-peak configuration over a long
time scale until it eventually evolves to a one-peak state
n= ±1. This leads to the very long transition times labeled
t0→2→±1 shown by the squares in Fig. 1 �and the dotted curve
for their average�. We shall discuss these three regimes in
more detail below.

2. Dynamical relaxation to n= ±1

We first consider a typical configuration of the first regime
which exhibits a relaxation to equilibrium ±1 driven by the
collective dynamical instability. Thus we choose a particular
realization with N=1000 particles of the initial condition de-
fined by the unstable equilibrium n=0 at E=−2 �Ec1�. In Fig.
2�a� we show the evolution of the various contributions �5�
and �6� to the total energy E. The fluctuating curves are the

gravitational self-energy �̄, the kinetic energy K and the ex-

ternal potential energy V̄ of the N-body system �from top to
bottom�. The constant curve labeled E is the total energy
which is conserved �as verified in Fig. 2�. The other constant

curves show the mean-field energy levels of K, �̄, and �̄ for
the equilibria n=0 and n= ±1. Thus we can see that the
system starts at levels n=0 and displays a transition to levels
n= ±1 over a few dynamical times tdyn. The fact that the
transition time scale is of order of a few tdyn and does not
depend on the number of particles, as was checked in Fig. 1
for E�−1.7 �Ec1�, is due to the collective character of the
instability. Indeed, as shown in Ref. �11� the thermodynami-
cal equilibrium n=0 becomes linearly unstable below the
critical energy Ec1 for the mean-field Vlasov dynamics. The
growth rate of this instability saturates to et/tdyn at low ener-
gies �11� which sets the time scale for the transition to equi-
librium n= ±1. Fig. 2�b� shows the evolution of the masses
ML and MR located in the left and right parts of the system.
It also clearly shows the dynamical instability which ampli-
fies the small initial random imbalance ML−MR to build a
left-peak state after a few tdyn. We can note that the relax-
ation is not fully complete as the system still exhibits some

FIG. 1. �Color online� The transition time t0→±1 from the un-
stable homogeneous state n=0 to the stable equilibria n= ±1 as a
function of total energy E, below the critical energy Ec1. At each
energy the crosses are the numerical results obtained for 200 real-
izations of the initial condition n=0, for a system of N=50 �a� and
N=1000 particles �b�. The solid line is the mean transition time
obtained by averaging over these numerical results. The squares
which are slightly shifted to the right show the transition times to
states n= ±1 for realizations which happen to first relax to state n
=2 over a few dynamical times. The dashed curve is the average
obtained for these systems.
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mean deviation and oscillations from the levels n=1 for K
and V̄ and for masses ML and MR�, although the largest en-
ergy component �̄ relaxes to its equilibrium level after
�60tdyn. We found that these small departures persist up to
104tdyn.

We present in Fig. 3 two snapshots of the density distri-
bution for the realization used in Fig. 2, at times t=8 and
12tdyn. We can see that the matter distribution has indeed
evolved from the homogeneous state to a one-peak configu-
ration close to equilibrium n=1 at t=8tdyn. However, it has
not yet fully relaxed and some collective oscillations persist
as already seen in Fig. 2, which also lead to oscillations of
the density and width of the peak.

We show in Fig. 4 two snapshots of the velocity distribu-
tion at the same times t=8 and 12tdyn. It has again evolved
from the distribution n=0 to the distribution n=1 at time
t=8tdyn. Although there are some oscillations in the tails �as
seen at time 12tdyn and the fluctuations of K in Fig. 2�a�� we
can see that the relaxation of the velocity distribution is
rather efficient and always remains close to the equilibrium
n=1.

We checked that for a small number of particles N=50 the
behavior of the system is the same in this energy range. The
states n= ±1 and n=0 are well separated and the system
exhibits a transition to equilibrium ±1 over a few dynamical
times.

3. Close to the critical energy Ec1

We now investigate the evolution for higher energies
E�−1.7�Ec1�, closer to the critical energy Ec1. We first dis-
play in Fig. 5 the evolution of the energy and mass
components for a system of N=50 particles at energy
E=−1.3 �Ec1�. Fig. 5�b� shows that the system evolves over a

FIG. 2. �Color online� �a� The evolution with time t of the vari-

ous contributions K, �̄, and V̄ to the total energy E of a system of
N=1000 particles. We display the curves obtained for a particular
realization of the initial condition defined by the unstable equilib-
rium n=0 at energy E=−2�Ec1�. The constant curves are the mean-

field energy levels of K �solid lines�, �̄ �dashed lines�, and V̄ �dot-
ted lines� for the equilibria n=0 and n= ±1. The system starts at
levels n=0 at t=0 and undergoes a transition to levels n=1 at
t�7tdyn. �b� The evolution with time of the masses ML �dashed
lines� and MR �solid lines� located in the left and right parts of the
system �x�L /2 and x�L /2�. The constant lines show the values
ML, MR of equilibrium n=1.

FIG. 3. �Color online� Two snapshots of the density distribution
��x� at times t=8 and 12tdyn. The histogram shows the matter dis-
tribution of the N-body system over 30 bins. The dashed curves are
equilibria n=0 �constant density� and n=1 �peak at x=0�.
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time scale set by the dynamical time tdyn, in agreement with
Fig. 1, but it does not settle into a stable equilibrium. Indeed,
it keeps fluctuating indefinitely from left-peak to right-peak
configurations and wanders over states n=0, ±1; this can
also be seen from the fluctuating energy levels in Fig. 5�a�
�we checked numerically that this fluctuating behavior re-
mains unchanged up to 104tdyn at least�. Therefore in this
regime the transition time t0→±1 which was shown in Fig. 1
only corresponds to the first time where the system gets close
to a state characterized by a density peak close to a boundary,
as equilibria ±1, but the fluctuations are too large to let the
system settle down in such a stable configuration. Hence it
keeps exploring various states with both left or right over-
densities.

Next, we show in Fig. 6 the evolution of a system of
N=1000 particles with the same energy E=−1.3�Ec1�. Be-
cause of the larger number of particles the system starts with
a more balanced state �ML−MR� /M �1/�N and the fluctua-
tions with time of various quantities are smaller. Therefore
we find that the system again wanders for a long time over

states with ML�MR and even exhibits several oscillations
from left-peak to right-peak configurations but it now man-
ages to eventually settle down into a stable equilibrium
n= ±1 after �8000tdyn. Indeed, as the system starts close to
ML=MR small fluctuations are initially sufficient to evolve
from ML�MR to ML�MR but once it has converged close
to either one of equilibria ±1 the fluctuations are no longer
sufficient to escape to the symmetric state.

4. Below the second critical energy Ec2

Finally, we noticed in Fig. 1 that at low energies below
Ec2 there are cases where the system does not exhibit a direct
transition to stable equilibria ±1. It first evolves to the two-
peak equilibrium n=2 over a few dynamical times and next
relaxes to the stable equilibrium n= ±1 over a much longer
time scale. We show in Fig. 7 four snapshots of the
phase-space distribution f�x ,v� for such a realization at
E=−2.5�Ec1�, with N=1000 particles, which first relaxes to

FIG. 4. �Color online� Two snapshots of the velocity distribution
f�v� at times t=8 and 12tdyn, in units of v /vdyn where we defined
vdyn=L / tdyn. The histogram corresponds to the N-body system
whereas the dashed curves are equilibria n=0 �narrow Gaussian�
and n=1 �broad Gaussian�.

FIG. 5. �Color online� The evolution of the energy components

K, �̄, V̄, and E �a� and of the masses ML, MR �b� as in Fig. 2.
We show the curves obtained for a particular realization with
N=50 particles of the initial homogeneous state at
E=−1.3�Ec1�. The system keeps wandering over states n=0, ±1 and
does not settle into a stable equilibrium.
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state n=2. Thus we can see that the system has already
evolved from an homogeneous configuration to a two-peak
state at t=6tdyn. It remains in such a configuration until
�2250tdyn while particles slowly diffuse out of the right den-
sity peak and at t=2300tdyn it has relaxed to the stable equi-
librium n=1. Of course the energy levels show the same
transitions from n=0 to n=2 and finally to n=1. In agree-
ment with the calorific curve shown in Fig. 4 of Ref. �11� we
note that for a fixed total energy E the temperature grows
�the velocity distribution becomes broader� as we go from
state n=0 to n=2 and finally to n=1. We shall investigate in
more detail the transition from equilibrium n=2 to state
n=1 in Sec. III B below. For systems with N=50 particles
we found that 58 out of 200 realizations exhibit this two-
stage behavior at E=−2.5�Ec1� whereas for N=1000 particles
this only occurs for 30 out of 200 realizations. Indeed, as
seen in Ref. �11� the linear growth rate of the two-peak in-
stability obtained for the mean-field Vlasov dynamics is
smaller than the growth rate associated with a one-peak per-

turbation �higher wave numbers are less unstable thanks to
the finite temperature, following the usual Jeans instability�.
Therefore systems with a larger number of particles which
follow more closely the mean-field dynamics should more
frequently evolve directly towards a one-peak state.

B. Initial equilibrium n=2

We now study in this section the relaxation to the stable
equilibrium n= ±1 starting from the equilibrium n=2.

1. Transition times

We first show in Fig. 8 the transition times t2→±1 obtained
for various realizations of the initial equilibrium n=2, as a
function of total energy, for systems with N=50 �Fig. 8�a��
and N=500 particles �Fig. 8�b��. We also plot the mean tran-
sition times derived from these realizations �solid line� and
the theoretical prediction �dashed line� of Eq. �63�. As in Sec.
III A 1 we defined the transition as the first time where �K
−K1�� �K−K2� and ��̄−�̄1�� ��̄−�̄2� �i.e., the kinetic and
self-gravity energies are closer to the levels of states n= ±1
than those of state n=2�. We can see that there is a large
dispersion from one realization to another for small systems
�N=50� but the mean transition time agrees reasonably well
with Eq. �63�. For larger N where discrete effects are less
violent �N=500� the dispersion is much smaller and we re-
cover the theoretical prediction �63� which is derived in the
limit of large N �which allows a perturbative analysis�. In
particular, note the steep increase at low energies when the
two narrow density peaks are separated by an almost void
region and there is a very slow diffusion of particles out of
the smallest peak until the system reaches the abrupt transi-
tion point discussed below in Fig. 10 where a collective in-
stability merges the smallest peak into the largest one. We
further discuss the dependence on energy of t2→±1 in Sec.
III B 3 below where we detail the theoretical calculation of
the transition time.

Next, we present in Fig. 9 the mean transition time t2→±1
as a function of the number of particles N, for various total
energies. We compare the numerical results �squares� with
the theoretical predictions �dashed lines� of Eq. �63�. We can
check that the agreement is reasonably good and that the
transition time scales linearly as N. In the limit N→
 the
equilibrium n=2 becomes stable, in agreement with the
mean-field analysis of Ref. �11� where it was shown that this
state is linearly stable for the Vlasov dynamics.

2. Diffusive relaxation to n= ±1

We first show in Fig. 10 the evolution of the various con-
tributions to the total energy, for a particular realization with
N=500 particles of the initial condition defined by the un-
stable equilibrium n=2 at energy E=−2.8�Ec1�. We can see
that the system displays a transition from levels n=2 to lev-
els n=1 at t�4.7�104tdyn. We can note that there is first a
slow drift up to �4.7�104tdyn where there is a sudden tran-
sition towards energy levels of n=1. This is more clearly
seen in Fig. 10�b� which displays the evolution of the masses
located to the left �ML at x�L /2� and to the right

FIG. 6. �Color online� The evolution of the energy components

K, �̄, V̄, and E �a� and of the masses ML, MR �b� as in Fig. 2.
We show the curves obtained for a particular realization with
N=1000 particles of the initial homogeneous state at
E=−1.3�Ec1� which only relaxes to equilibrium n=1 over
�8000tdyn.
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�MR at x�L /2� of the system. We can see that there is a slow
transfer of matter from the right peak to the left peak until
�4.7�104tdyn. Then, there is a sudden jump where the mass
ratio reaches its equilibrium value after a few dynamical
times. This suggests that there is first a slow evolution over a
few thousand tdyn with a quasistatic exchange of matter be-
tween both density peaks which remain close to local ther-
modynamical equilibrium states for separate clouds until the
ratio of both peak masses becomes so large that the system
turns dynamically unstable and relaxes towards equilibrium
n=1 over a few dynamical times tdyn. Indeed, as shown in
Ref. �11� both statistical equilibria n=1 and n=2 are stable at
low temperature for the mean-field Vlasov dynamics �al-
though only state n=1 is thermodynamically stable�. By con-
tinuity, this means that there is a threshold where the system
leaves the basin of attraction of two-peak configurations to
enter the basin of attraction of the one-peak equilibrium. In-

deed, two-peak states close to the equilibrium n=2 �i.e., with
a mass ratio of both clouds close to unity� have negative
stability eigenvalues and remain stable with respect to the
mean-field Vlasov dynamics. On the other hand, two-peak
states with a high mass ratio can be seen as small perturba-
tions of the one-peak equilibrium n=1 which is itself stable.
Therefore such two-peak states undergo a collective instabil-
ity which leads to relaxation towards the stable equilibrium
n=1. For the system shown in Fig. 10 this transition between
two different stability regions of the mean-field dynamics
occurs at t�4.7�104tdyn.

The solid lines starting from ML=MR=M /2 at t=0 are
the theoretical estimate �62� which has been normalized by a
factor 0.2 of order unity to match the slope at early times of
the mass transfer. This was then used to predict the transition
times shown in Figs. 8 and 9 for a broad range of total
energies and particle numbers.

FIG. 7. Four snapshots of the phase-space distribution f�x ,v� at times t=0, 6, 2200, and 2300tdyn for a system of N=1000 particles. For
this particular realization of the initial homogeneous state n=0 the system first undergoes a transition to the equilibrium n=2 over 6tdyn and
only relaxes to the one-peak state n=1 at t�2250tdyn.
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We present in Fig. 11 four snapshots of the density distri-
bution ��x� for the N-body system as compared with the
mean-field equilibria n=1 and n=2. In agreement with Fig.
10 we recover the sudden transition at �47 000tdyn from a
two-peak state to a one-peak state, after the right peak has
slowly lost about half its mass to the left peak. We can also
check that the density distribution relaxes to the statistical
equilibrium n=1.

In a similar fashion, we show in Fig. 12 the velocity dis-
tribution f�v�, which is also seen to relax from the equilib-
rium n=2 to state n=1. We note that the relaxation of the
velocity distribution seems to be more efficient than for the
density distribution. Indeed, at t=46 500tdyn it is still close to
the Gaussian n=2 whereas at t=46 800tdyn it is already close
to the Gaussian n=1.

We display in Fig. 13 four snapshots of the phase-space
distribution f�x ,v�. It shows again that the transition from

n=2 to n=1 proceeds in two steps, with a slow diffusion
followed by a sudden disruption of the smallest density peak.
In particular, we can see in the upper right panel of Fig. 13
that the right peak still exists as a distinct object at
t=46 500tdyn and has disappeared by t=46 800tdyn.

Finally, we show in Fig. 14 four snapshots of the phase-
space distribution around the transition to the one-peak
state. We can see that what is left of the right peak at
t�46 770tdyn exhibits a strong deformation at 46 774tdyn and
is absorbed into the left peak at 46 776tdyn. This describes in
details the second step of the transition as a collective dy-
namic instability which merges the remains of the smallest
peak into the largest one over a few dynamical times tdyn.

3. Estimate of the mean transition time t2\±1

We describe in this section how the mean transition times
t2→±1 shown in Figs. 8 and 9 can be estimated by analytical
means.

The relaxation towards thermal equilibrium of N-body
systems such as the OSC model is often studied through the
stochastic dynamics of a test particle in interaction with the
rest of the system. In such cases, the test particle experiences
both a systematic drift �such as the dynamical friction suf-
fered by a high-velocity star moving through a cloud of low-
velocity stars �17,18�� and a diffusion, due to random en-
counters, which both grow linearly with time. Moreover, if
the correlation times are small one can use a Markovian ap-
proximation so that the relaxation of the test particle in the
thermal bath is described by a Fokker-Planck equation �19�,
which is fully parametrized by the friction and diffusion co-
efficients. One may then describe for instance the relaxation
of the velocity distribution of the test particle and its ap-
proach to thermal equilibrium �20,21�.

In the case we consider here, the system starts in an in-
homogeneous mean-field equilibrium with two peaks at the

FIG. 8. �Color online� The transition time t2→±1 from the two-
peak equilibrium n=2 to the one-peak stable equilibria n= ±1 as a
function of total energy E. The crosses correspond to various real-
izations of the initial equilibrium n=2 at a given energy, for systems
of N=50 �a� and N=500 particles �b�. The solid line is the mean
transition time obtained from these realizations whereas the dashed
line is the theoretical prediction �63�.

FIG. 9. �Color online� The mean transition time t2→±1 as a func-
tion of the number N of particles. The various lines correspond to
total energies E=−2.73�Ec1�, −2.9�Ec1�, and −3.1�Ec1� from bottom
to top. The squares are the numerical results �averaged over many
realizations, solid line in Fig. 8� whereas the dashed-lines are the
theoretical prediction �63�.
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boundaries. We model the slow loss of matter of the smallest
peak, displayed in Fig. 10, as a diffusive process which
makes particles located in the smallest potential well escape
to the other potential well. Since the escape time is shorter
for the smaller potential well we neglect the flux from par-
ticles moving from the deepest well to the smallest one. This
is consistent with Fig. 10�b� which shows that the lightest
peak is almost steadily losing mass. Here we shall neglect
the evolution with time of the small density peak due to mass
loss and we simply consider the bistable system n=2 made
of the symmetric double potential well ��x� which has two

minima at the walls x=0, L and a maximum at x=L /2. Then,
we focus on the behavior of a test mass m orbiting in the left
peak and we study the evolution of its energy � �whence of
its orbit� due to encounters with other discrete particles.
Computing the associated friction and diffusion coefficients
we obtain the average time � required to reach the barrier
energy ��L /2�−��0� and escape from the potential well
through a Fokker-Planck dynamics. This allows us to esti-
mate the transition time t2→±1�� to relax to the thermody-
namically stable equilibrium n=1.

In order to separate the mean-field dynamics from the
discrete effects which give rise to the diffusion of particles
we write the Hamiltonian �1� as

HN = m�H0 + HI� �19�

and we defined the mean-field Hamiltonian H0 by

H0 = �
j=1

N 
v j
2

2
+ �0�xj� + V�xj�� �20�

and the interaction Hamiltonian HI by

HI = e�t
gm �
j�j�

�xj − xj�� − �
j

�0�xj�� . �21�

In Eq. �20� the mean-field gravitational potential �0 is given
by Eq. �3� where ��x�� is the mean-field equilibrium distri-
bution �7�. In Eq. �21� we added a factor e�t for the compu-
tation of perturbative eigenmodes and we shall consider the
limit �→0+. Thus H0 describes the mean-field dynamics
whereas HI describes the discrete effects which vanish in the
limit N→
. Therefore we consider HI as a perturbation to
H0 and we apply a perturbative analysis to the dynamics of
individual particles. Here it is convenient to work with the
action-angle variables �J ,w� defined from the Hamiltonian
H0 which describe the motion of a particle of energy
�=v2 /2+�0 along its nonperturbed orbit in the equilibrium
potential �0=�0+V from position x− to x+ �18,22�:

J =
2

2	
�

x−

x+

dx�2�� − �0�x�� , �22�

and

w = ��
x−

x dx�
�2�� − �0�x���

with � =
d�

dJ
. �23�

Thus H0=H0�Jj� only depends on the actions Jj. On the
other hand, thanks to the periodicity of 2	 with respect to w
of the nonperturbed orbits x�J ,w� we can write the two-body
interaction as

gm�x − x�� = �
k,k�=−





�k,k��J,J��ei�kw−k�w��, �24�

which defines the Fourier coefficients �k,k��J ,J��. Besides,
from Eq. �3� the mean-field potential �0�x� reads

FIG. 10. �Color online� �a� The evolution with time t of the

various contributions K, �̄, and V̄ to the total energy E of a system
of N=500 particles. We display the curves obtained for a particular
realization of the initial condition defined by the unstable equilib-
rium n=2 at energy E=−2.8�Ec1�. The constant curves are the mean-

field energy levels of K �solid lines�, �̄ �dashed lines�, and V̄
�dotted lines� for the equilibria n=1 and n=2. The system
undergoes a transition from levels n=2 to levels n=1 at
t�4.7�104tdyn. �b� The evolution with time of the masses ML

�dashed lines� and MR �solid lines� located in the left and right parts
of the system �x�L /2 and x�L /2�. The constant lines show the
values ML, MR of equilibrium n=1. The two linear solid lines start-
ing from ML=MR=M /2 at t=0 are the theoretical estimate �62� for
the mass transfer between both density peaks.
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�0�x� = g� dJ�dw�f0�J���x − x�� �25�

=
2	

m
�

k=−



 � dJ�f0�J���k,0�J,J��eikw, �26�

where we used the canonical change of variable
dxdv=dJdw and f0 is the mean-field equilibrium distribution
�7�. This yields

HI = e�t
 1

2 �
j,j�

j�j�

�
k,k�

�k,k��J,J��ei�kw−k�w��

−
2	

m
�

j
�

k
� dJ�f0�J���k,0�J,J��eikw� . �27�

Then, the equations of motion become

J̇j = −
�

�w
�H0 + HI�, ẇj =

�

�J
�H0 + HI� . �28�

We write the action-angle trajectories �J�t� ,w�t�� as the per-
turbative expansions J=J�0�+J�1�+J�2�+¯ where J�k� is for-
mally of order k over HI. At zeroth order we simply have

J̇j
�0� = −

�H0

�wj
= 0, ẇj

�0� =
�H0

�Jj
= ��Jj

�0�� , �29�

which yields the mean-field equilibrium orbits:

Jj
�0� = const and wj

�0� = wj
�0��0� + ��Jj

�0��t . �30�

At first order we obtain

J̇j
�1� = −

�HI

�wj
, ẇj

�1� =
d�

dJ
Jj

�1� +
�HI

�Jj
, �31�

where we can substitute the zeroth-order orbits in the right-
hand side. Using the property �k�,k�J� ,J�=�k,k��J ,J��*

obtained from Eq. �24� a simple calculation yields �e.g.,
Ref. �23��

FIG. 11. �Color online� Four snapshots of the density distribution ��x� at times t=0, 46 500, 46 800, and 80 000tdyn. The histogram shows
the matter distribution of the N-body system over 30 bins. The dashed curves are equilibria n=1 and n=2.
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Jj
�1� = −

��

�wj
, wj

�1� =
��

�Jj
, �32�

with

� = e�t
 1

2 �
j,j�

j�j�

�
k,k�

�k,k�

� + i�k� − k����
ei�kw−k�w��

−
2	

m
�

j
�

k
� dJ�f0�J��

�k,0

� + ik�
eikw� . �33�

At second order we need to follow the first-order orbits in the
right-hand side of Eq. �28� and we have for the actions

J̇j
�2� = − �

j�

�2HI

�wj�Jj�
Jj�

�1� − �
j�

�2HI

�wj�wj�
wj�

�1�. �34�

Using again �k�,k=�−k,−k�=�k,k�
* and taking the average �with

the equilibrium distribution f0�J�� over the actions and
angles �J�0� ,w�0��0�� of other particles yields at order 1 /N
�note that �k,k�
m and m
1/N�

�J̇�2�� = e2�t �

�J
2	

m
� dJ�f0�J���

k,k�

�k2��k,k��
2

�2 + �k� − k����2

−
4	2

Nm2 � dJ�dJ�f0�J��f0�J���
k

�k2�k,0�k,0
*

�2 + �k��2 �
− e2�t2	

m
� dJ�f0�J��

�

�J�
�
k,k�

�kk���k,k��
2

�2 + �k� − k����2 .

�35�
Then, using lim�→0+� / ��2+x2�=	�D�x� where �D is Dirac’s
distribution, the limit �→0+ gives

�J̇�2�� =
2	2

m
� dJ�f0�J���

k,k�

	k
�

�J
− k�

�

�J�



���k,k��
2k�D�k� − k���� , �36�

which does not depend on time. From these results we can
obtain the mean drift and diffusion of the action J of a test
particle. First, the average change ��J�= �J�t2�−J�t1�� of the
action over a time interval �t= t2− t1 reads at order 1 /N

FIG. 12. �Color online� Four snapshots of the velocity distribution f�v� at times t=0, 46 500, 46 800, and 80 000tdyn. The histogram
corresponds to the N-body system whereas the dashed curves are equilibria n=2 �narrow Gaussian� and n=1 �broad Gaussian�.
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��J

�t
� = ��J�1� + �J�2�

�t
� = �J̇�2�� �37�

since �J̇�2�� is constant and �J�1��=0 when we average �23�
over the angles w�0��0� as seen from Eq. �32�. Next, from
Eqs. �32� and �33� the mean-square change ���J�2� reads at
order 1 /N

���J�2� = e2�t1
2	

m
� dJ�f0�J���

k,k�

k2��k,k��
2

�2 + �k� − k����2

��1 + e2��t − 2e��t cos��k� − k�����t��

− e2�t1
4	2

Nm2 � dJ�dJ�f0�J��f0�J���
k

k2�k,0�k,0
*

�2 + �k��2

� �1 + e2��t − 2e��t cos�k��t�� . �38�

The limit �→0+ now gives

���J�2

�t
� =

2	

m
� dJ�f0�J���

k,k�

2k2��k,k��
2

�
1 − cos��k� − k�����t�

�t�k� − k����2

−
4	2

Nm2 � dJ�dJ�f0�J��f0�J���
k

2k2�k,0�k,0
*

�
1 − cos�k��t�

�t�k��2 . �39�

As seen from Eqs. �32� and �33� the action J and angle w of
each particle in a given realization �i.e., without performing
any averaging� are modified by discrete effects over a time
scale which grows as �N and as expected in the limit
N→
 we recover the mean-field dynamics. Since we con-
sider the limit of large number of particles, which justifies

FIG. 13. Four snapshots of the phase-space distribution f�x ,v� at times t=0, 46 500, 46 800, and 80 000tdyn.
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the perturbative approach �19�, let us consider in Eq. �39�
time scales of order �t��N→
. Using the equality
limt→
�1−cos tx� / tx2=	�D�x� we obtain in this large-N
limit:

���J�2

�t
�




=
4	2

m
� dJ�f0�J���

k,k�

k2��k,k��
2�D�k� − k���� .

�40�

Thus both the mean drift and diffusion of the action occur
through resonances between particle orbits �see also Ref.
�23��. Moreover, they both grow linearly with time. We can
note that Ref. �24� also obtained a diffusion coefficient of the
form �39� which decays as 1/ t with an oscillatory behavior
for the HMF model in the limit of low temperatures where a

density peak appears. However, Ref. �24� approximated the
core orbits by an harmonic oscillator with an unique fre-
quency �0 so that there was no integration over �� as in
Eqs. �36� and �39� through the dependence ���J��. In order
to take the large-time or large-N limit it is necessary to take
into account the distribution of orbital frequencies f0���.
Note that our approach also applies to any Hamiltonian sys-
tem with two-body interactions, such as the HMF model. At
this point, it is convenient to change variable from the action
J to the energy ��J�=v2 /2+�0 �both are defined from the
mean-field Hamiltonian H0�. Using the expansion

�� = ��J +
1

2

d�

dJ
��J�2 + ¯ �41�

we obtain at order 1 /N

FIG. 14. Four snapshots of the phase-space distribution f�x ,v� at times t=46 770, 46 774, 46 776, and 46 778tdyn around the transition to
the one-peak state.
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���

�t
� =

4	2

m
� dJ�f0�J�� �

k,k�=1


 	k
�

�J
− k�

�

�J�



� ��k,k��
2k��D�k� − k���� , �42�

and

�����2

�t
� =

8	2

m
� dJ�f0�J�� �

k,k�=1




��k,k��
2k2�2�D�k�

− k���� . �43�

In Eqs. �42� and �43� we changed the sums over k
and k� from �−
 ,
� to �1,
� which gave a factor 2.
We can check from Eq. �42� that the transfer of energy
���J�→J�=−���J→J�� is antisymmetric over �J ,J�� so that
the mean change of energy over all particles �with the
distribution f0�J�� vanishes. This is related to the conserva-
tion of energy by the Hamiltonian dynamics. On the
other hand ����2 is symmetric. We now focus on the low
temperature regime T→0,�L→
, where the initial
state n=2 consists of two narrow density peaks at
the boundaries x=0,L. Then, from the asymptotic
behavior �14� and the rescaling �12� we obtain for the
properties of the core which contains most of the mass the
scalings

�c

�̄
� �L

2,
Rc

L
� �L

−2,
�c

�dyn
� �L,

vc

vdyn
� �L

−1,
Jc

Jdyn
� �L

−3, �44�

where �c, Rc, �c, vc, and Jc are the typical density, orbital
radius, frequency, velocity, and action of core particles and
we defined �dyn=1/ tdyn, vdyn=L / tdyn, and Jdyn=LVdyn, from
the dynamical time tdyn of Eq. �18�. Let us consider the dis-
sipation rate �=−��� /�t� of a halo particle with an orbit of
order L /4 which probes a finite part of the left potential well
�i.e., not confined to the small core at x�Rc�. Its typical
frequency, velocity, and action are �dyn, vdyn, and Jdyn. Since
most of the mass �except for an exponentially small fraction,
see Eqs. �14� and �15�� is in the core the dissipation rate
obtained from Eq. �42� is dominated by core particles J�.
Therefore we have k /J��L and k� /J���L

3 hence expression
�42� is governed by its second term. Next, using

df0

dJ�
= ��

df0

d��
= − ���f0 �45�

for the equilibrium distribution �7� and integrating by parts
we obtain

� =
4	2�

m
� dJ�f0�J�� �

k,k�=1




��k,k��
2k2�2�D�k� − k���� . �46�

As could be expected, we find that the energy drift ����
corresponds to a damping term �� is positive� of order 1 /N.
Thus the high-energy halo particle loses its energy to lower-
energy core particles. This is similar to the dynamical fric-
tion suffered by a high-speed star moving through an homo-

geneous background of lower velocity stars �17,18�.
Moreover, the diffusion coefficient D= �����2 /�t� obtained
in Eq. �43� and the dissipation coefficient � are related by

D =
2�

�
= 2�T . �47�

Thus we recover the usual Einstein relation �47� for a halo
particle. Next, from the definition �24� we have

�k,k� = gm�
0

	

dw�
0

	

dw�	2�x − x��cos�kw�cos�k�w�� . �48�

If we approximate each orbit by its first harmonic
x=R sin�w /2� we obtain

�k,k� � −
gm

2	

R�2

R
�k�,1 for k � 1, k� � 1, R� � R . �49�

Taking into account the exact orbital trajectory would re-
move the Kronecker factor �k�,1 �higher k� would contribute�
but would not change the scaling gmR�2 /R. Next, from Eq.
�27� we see that the action and angle of each core particle in
a given realization �i.e., without performing any averaging�
are modified by discrete effects over a time scale �tc of order

�tc �
J

J̇
�

�N

�c
�

�N

�L
tdyn, �50�

whereas for halo particles we obtain

�th � �N�L
3tdyn � �tc, �51�

where we used the scalings �44� and �49�. Therefore we see
that the core particles are significantly perturbed over a time
scale which is much smaller than for the halo particles. Then,
the resonances between halo and core particles will be de-
tuned over times of order �tc during which the trajectory of
the halo particle has only suffered small deviations. This
means that the core particles act as an external noise charac-
terized by small time scales with respect to the halo particle.
This justifies a Markovian approximation for the behavior of
the halo particle and allows us to write a Fokker-Planck
equation �19� for the evolution of the probability distribution
P��� of its energy:

�P

�t
=

�

��
��P� +

1

2

�2

��2 �DP� . �52�

The orbit-averaged Fokker-Planck equation �52� clearly
separates the slow changes in phase-space coordinates due to
encounters from the fast orbital motion in the mean-field
potential �18�. Indeed, the dissipation and diffusion coeffi-
cients scale as 1 /N from Eqs. �42� and �43�. It is interesting
to note that for the OSC model �1� particles which do not
cross the test mass do not contribute. This can be checked
from Eq. �48� by noting that in such cases the absolute value
can be dropped which yields �k,k�=0 for k�0 and k��0.
This is related to the fact that in 1D gravity the force is
merely proportional to the relative number of particles to the
left and to the right of the test particle, independently of
distances, as seen from Eqs. �1� and �16�. Therefore only
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particle crossings can lead to fluctuations of the force seen by
the test mass. The stationary solution Pst of the Fokker-
Planck equation �52� is

Pst��� 

1

D
e−�2�/D��. �53�

We can note that this distribution agrees with the statistical
equilibrium state “n=2” described by the Maxwellian �7�
thanks to Einstein’s relation �47�. On the other hand, we
must point out that the relaxation of core particles cannot be
described by the Fokker-Planck equation �52� because there
is no separation of time scales as in Eqs. �50� and �51� which
prevents the use of the Markovian approximation. This also
explains why the Einstein relation �47� does not hold for core
particles �since we cannot any longer neglect the first term of
Eq. �42��. From Eq. �52� we can obtain the mean time � it
takes for a particle starting at energy �− in the potential well
�0 to reach the maximum potential energy �+. It reads �19�

� = �
�−

�+

d�eF����
�−

�

d��
2

D����
e−F����, �54�

with

F��� = �
�−

�

d��
2�����
D����

= ��� − �−� . �55�

Equations �54� and �55� clearly show that the escape time is
dominated by the time spent at large values of �, that is at
large radii of order L /2 far from the small core. This yields

� �
2

�2D
�e���+−�−� − 1 − ���+ − �−�� . �56�

On the other hand, the diffusion coefficient �43� can be sim-
plified by first integrating over J�:

D =
8	2

m
�

k,k�=1


 �� dJ�

d��
� f0�J����k,k��

2k���2�
��=k�/k�

.

�57�

Since � /���1/�L�1 the sum over k can now be approxi-
mated by an integral over J� which yields

D �
8	2

m
�
k�=1


 � dJ�f0�J����k,k��
2� k�2��2

�
�

k=k���/�
.

�58�

From the scalings �44� and �49� we obtain

D �
1

N�L
2

T2

tdyn
. �59�

Taking for the energy gap ��=�+−�− the potential barrier
��=�� between the bottom of the potential well at x=0
and the maximum at x=L /2 we obtain

� � tdynN�L
2�e��� − 1 − ���� ,

�tdynN�L
2
�max

�min
− 1 − ln

�max

�min
� , �60�

where we used Eq. �8�. Thus at low temperatures we obtain
from Eqs. �14� and �15� the asymptotic behavior:

� � tdynN�L
4e�L

2/8 � tdynN	Tc2

T

2

e	2Tc2/2T, �61�

where we used the rescaling �12�. From Eq. �60� we can
estimate the mass flux from one peak to the other one as

dM

dt
=

M

2tM
with

tM

tdyn
= 0.2

N�L
2

2

�max

�min
− 1 − ln

�max

�min
� .

�62�

Here the factors M /2 and N /2 express the fact that only half
of the total mass is within each peak whereas the factor 0.2
of order unity has been chosen so as to match the slope of the
mass transfer at early times displayed in Fig. 10�b�, which
shows the evolution of a typical system with a transition time
t2→±1�4.7�104tdyn equal to the average value obtained
from 200 numerical simulations �solid line in Fig. 8�b��.
Then, in order to take into account the acceleration of the
mass transfer close to the transition we simply write the
mean transition time t2→±1 as

t2→±1 =
�M

M/2
tM with �M = �ML�n = 1� − M/2�/4,

�63�

where ML�n=1� is the final mass located at x�L /2 in the
equilibrium state n=1 whereas the factor 4 accounts for the
late steepening of the mass transfer estimated from Fig. 10.
The transition time �63� is shown by the dashed lines in Figs.
8 and 9. We can verify that it agrees with numerical simula-
tions and recovers the steep increase obtained at low total
energies, as the exponential of the inverse temperature �see
Eq. �61��. The departure at higher energies close to the tran-
sition Tc2 is expected since the approach described above
was performed in the low-temperature limit �L�1 where the
hierarchy �51� holds. Close to Tc2 one cannot distinguish
halo and core particles and one cannot use a Fokker-Planck
equation as Eq. �52�. Besides, Eq. �61� shows that the relax-
ation time increases linearly with the number of particles N,
in agreement with the numerical results shown in Fig. 9. This
is different from the relaxation of homogeneous states ob-
tained in the HMF model �21� where the relaxation time was
seen to grow faster than N �numerical simulations gave
�N1.7 �9,25��. However, we must note that Eq. �61� was
derived in the low-energy limit where the system is strongly
inhomogeneous. Therefore the physical process involved in
the relaxation �the escape of particles from the smallest po-
tential well� is rather different. On the other hand, Ref. �26�
also found a relaxation time proportional to N for the 1D
gravitational system �which is identical to the OSC model
without the reflecting walls and the external potential V�.
However, using the Fokker-Planck equation derived in Ref.
�27� for the diffusion in �v ,a� space �velocity v and accel-
eration a� from a Markovian approximation, Ref. �26� ob-
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tained a Fokker-Planck equation in energy space as in Eq.
�52� but without the friction term. Indeed, as seen above, the
latter arises from the correlations between particles which
accumulate over time but these were not considered in Ref.
�27� which computed the transport coefficients in �v ,a�
space in the limit of infinitesimal time steps and next as-
sumed a Markovian evolution. This procedure cannot be ap-
plied here since correlations do not decrease exponentially
with time �see, for instance, the cosine dependence in Eqs.
�33� and �39�� and the dynamics cannot be described as Mar-
kovian over time steps of the order of a few orbital times
�which amounts to erase all correlations every few orbital
times�. Moreover, the dissipation term in Eq. �52� is clearly
required by physical consistency to recover the stationary
distribution �53� and Einstein’s relation.

We can note that halo and core particles are rather
strongly coupled in the sense that the dissipation and diffu-
sion coefficients only decrease as a power of the ratio of
orbital frequencies �� /� �through the factors �R� /R�2 in Eq.
�49� and ��� /��2 in Eq. �58�� which gives rise to the inverse
power of �L in Eq. �59�. This is significantly different from
the coupling in 3D gravity between a small dense core and
unbounded scattering particles. In that case the smooth gravi-
tational interaction �for nonzero impact parameter� leads to a
coupling and a dissipation which decrease exponentially with
the ratio of frequencies �28�. In the case we consider here the
large transition time observed at low temperature is not due
to exponentially small couplings between halo and core par-
ticles. It is merely due to the usual Arrhenius factor e−��/T

associated with the diffusion through a finite potential bar-
rier. Finally, we can note that our results also apply to any
Hamiltonian system with a two-body interaction which
shows similar equilibria states. We only need to use the rel-
evant scalings over the temperature T �in our case written in
terms of �L�.

IV. CONCLUSION

We have studied in this article the relaxation of a 1D
gravitational system �OSC model� which was originally de-
rived from the formation of large-scale structures in cosmol-
ogy �11,16,29�. We have checked that the homogeneous
equilibrium state n=0 becomes unstable below the critical
energy Ec1 and exhibits a relaxation to the one-peak state
n= ±1 over a few dynamical times. This is consistent with
the fact that the homogeneous state is unstable both from a
thermodynamical analysis and from a dynamical mean-field
analysis. Therefore the linear instability of the Vlasov dy-
namics leads to a violent relaxation to the stable equilibrium
n= ±1 �or to a nearby one-peak state� which develops
through a collective dynamical instability.

On the other hand, close to the transition Ec1 we have
found that for moderate numbers of particles �N=50� the
fluctuations due to finite N effects are large enough to pre-
vent the system from converging towards a stable equilib-
rium. Indeed, the system keeps wandering over left and right
peak states since it can easily jump from one equilibrium to
another one. For larger numbers of particles �N=1000� the
fluctuations due to discrete effects are much smaller than the
distance �in terms of energy levels or mass ratios� between

homogeneous, left and right peak states �unless we go closer
to Ec1�. Then, starting from the homogeneous unstable
equilibrium the system wanders again for a long time
��5000tdyn� over left and right peak states but it eventually
manages to settle in a stable left or right peak equilibrium.

Finally, at low energies below Ec2 we have noticed that in
some cases the homogeneous state does not relax directly to
a left or right peak configuration but first converges over a
few dynamical times towards a two-peak state close to equi-
librium n=2. Then, the system undergoes a slow collisional
relaxation towards a one-peak state n= ±1.

Next, we have investigated the relaxation to thermody-
namical equilibrium of the two-peak equilibrium n=2. As
expected, we have found that since this is a stable equilib-
rium of the mean-field Vlasov dynamics the relaxation in-
volves a slow diffusion process over a time scale t2→±1
which diverges with N. Moreover, after the smallest density
peak has lost most of its mass the two-peak configuration
�with a high mass ratio� becomes dynamically unstable and
the system converges to a one-peak state over a few dynami-
cal times. We have estimated analytically the mean transition
time t2→±1 by describing the slow diffusion of particle ener-
gies due to finite N effects with a Fokker-Planck equation.
We have found that the friction and diffusion coefficients of
halo particles satisfy Einstein’s relation and we have ob-
tained a mean transition time of the form t2→±1�Ne1/T

which is proportional to the number of particles and grows at
low temperatures. We have checked that this prediction
agrees reasonably well with our numerical simulations. The
relaxation involves an efficient coupling between the halo
particles which extend close to the barrier at L /2 and the
core particles buried in the density peaks thanks to efficient
resonances at high harmonics. Thus although halo particles
have a much smaller orbital frequency than core particles the
dissipation and diffusion due to the buildup of correlations
and encounters do not vanish exponentially with the ratio of
orbital frequencies.

Therefore we have found that the relaxation of the OSC
model proceeds in a fashion similar to some other long-range
systems. It first involves a violent relaxation phase governed
by dynamical instabilities, where the system converges to
stable solutions of the mean-field Vlasov dynamics over a
few dynamical times. This is followed by a second much
slower collisional relaxation phase where the system goes
through a series of quasistationary states of the Vlasov dy-
namics until it reaches thermal equilibrium. Moreover, we
have found that this slow evolution can be followed by an-
other violent relaxation step as the series of quasistationary
states may lead to an unstable configuration �the least stable
eigenvalue increases along the series and eventually becomes
positive� which quickly relaxes to a new quasistationary so-
lution. Here we note that the slow relaxation of the system as
it goes through the series of quasistationary states is due to
dynamical constraints and not to metastability as for the
cases discussed, for instance, in Ref. �30� where the system
is trapped in local entropy maxima. On the other hand, the
route to thermal equilibrium clearly depends on the initial
conditions. Therefore the relaxation time exhibits a strong
dependence on the initial conditions, as shown by the com-
parison of t0→±1 and t2→±1 studied in this paper.
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